
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 6,497-505 (1986) 

ON THE EFFECTS OF IRREGULAR BOUNDARIES 
IN FINITE DIFFERENCE MODELS 

GElR PEDERSEN 

Universitetet i  Oslo, Matematisk Institutt, P B  1053-Blindern, Oslo 3 ,  Norway 

SUMMARY 

Propagation of periodic waves in the vicinity of irregular saw-tooth shaped boundaries in finite difference 
models is investigated. The reflection of an incoming wave from a single saw-tooth boundary is found to 
be accompanied by a phase shift. It is shown that any wave mode propagating along such a boundary is 
trapped and decays in the direction normal to the boundary. A wave propagating along a channel with 
saw-tooth shaped lateral boundaries is influenced by the trapped waves, which leads to a reduction of the 
phase velocity. Phase velocities obtained from the present normal mode analysis are compared to velocities 
in numerical experiments. The agreement is excellent. 
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INTRODUCTION 

In numerical models for wave propagation in oceans and lakes, implementation of boundaries 
of rather complex shape is often necessary. Such boundaries are obviously represented most 
accurately by finite element techniques or by use of curvilinear co-ordinates. Such methods are 
expensive and generally more troublesome to apply than standard difference methods with 
rectangular grids. The latter are thus still widely used. In rectangular grids, boundaries are 
usually approximated by a series of line segments parallel to the axes, as illustrated in Figure l(a). 
The corresponding discretization errors are generally of first order in the grid increments and 
may often be important and even dominant. In this paper we will describe some effects arising 
from the presence of such saw-tooth boundaries aligned at 45" to the axes. Contrary to boundaries 
of more complicated shapes, the effects of these may be simply analysed in terms of wave modes. 

Weare' investigated the solution of the AD1 scheme for a flow in a channel aligned at 45" to 
the axes, as depicted in Figure l(b). The flow was released from rest with a constant surface 
slope in the direction of the channel. He experienced a transverse variation of the surface elevation 
which he also was able to predict analytically. M@k2 studied propagation of single pulses of 
finite length along the same channel. He performed numerical experiments using the AD1 scheme 
as well as the explicit FB (forward-backward) scheme which is described in the next section. 
For both schemes he observed a significant decrease in phase velocity for narrow channels. 

In the next section we study the reflection of a periodic incoming wave from a saw-tooth 
boundary and prove the existence of waves trapped to this boundary. In the section after that 
we predict the velocity decrease reported by M@rk2 by constructing periodic propagating 
waves satisfying the boundary conditions at  the channel walls. We have only considered the FB 
scheme but our results will probably apply to most schemes based on the grid in Figure 2. 
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Figure 1 .  (a) line-segment approximation to an irregular coast; (b) channel aligned 45" to the axes 

BASIC EQUATIONS 

A Cartesian co-ordinate system with horizontal axes Ox and O y  in the undisturbed free surface 
is introduced. With the constant depth h as characteristic length scale and (gh)''* as velocity 
scale the linear non-dimensional shallow water equation reads 

aV 
-= - v - v ,  - = -vr], ar] 
at a t  

where r]  is the surface elevation, v = ui + uj, the horizontal component of the velocity, V = ;@/ax) + 
j(d/ay), the horizontal component of the gradient operator, and t is the non-dimensional time. 
The elimination of v between the two equations in (1) gives 

At a rigid wall we have the zero flux condition: 

u, = v-n  = 0, (3) 
where n is the unit normal to the boundary. Using the second equation in (1) we find an alternative 
form of (3): 
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Figure 2.  Definition sketch for the grid 

Substitution of a plane wave solution v]  = yjei(ax+BY-w') into ' (2) gives the relation 

w2 = a2 + f i ' .  ( 5 )  

We denote CI by o1 + i y l  and f i  by o, + iy,. A real o is possible if (i) y1 = o, = 0, Iy21 < lo1 1, 
( i i )  y ,  = o1 = 0, Jy l  I > 1021, (iii) 0, = tiolr y, = - y l / t i  for some real ti. The last alternative 
corresponds to a wave number vector of the form k = k, + ik2 where k, and k2 are real and 
orthogonal. If  k, = 0 we have a pure harmonic propagating wave and if k, # 0 (iii) may be 
reduced to (i) or (ii) by a rotation of the co-ordinate system. We will be particularly concerned 
with the case a = /j* = r~ - iy, for which (5) gives 

(6 )  
In Figure 2 we have depicted a cell in a standard staggered grid. For simplicity the grid 

increments A x  and Ay are chosen to be equal throughout this paper. The centre of the cell is 
located at (x,  y) = (jAx, k A x )  where we have the v]-node. This space discretization is the basis of 
several numerical  scheme^.^ For our investigations we will choose one of the simplest, which 
we will refer to as the FB (forward-backward) scheme. Our main results will though be valid 
for most of the differences and are defined correspondingly. Expressed in terms of these operators 
the FB scheme reads 

0 2  = a2 + ,*2 = 2 0 2  - 2 y 2  

where n refers to the time t = nAt, etc. As in the analytical case, elimination of the velocities gives 
a second-order equation for v ] :  

I 1 
-(qf't At2 I . 1  ' - 2 q ' .  1 . J  ~ q ' T 1 )  1.J  = ~ { ( vY+ 1 , j  - 2VY.j + ~ 1 -  1.j) + (VY,j+ 1 - %Y,j + VY,j-  1 I}. (8) A.Y2 
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where 

2 . wAt 2 . a A x  - 2 . PAX 
At 2 A x  2 Ax 2 

w=-sin---, a=-sin-- and P=-sin---. 

If a and [j are real (9) always gives a real w provided At < 2-'12Ax.  Taylor series expansions in 
terms of' CIAX, PAX and wAt lead to 

w2 = a2 + p2 + i$At2(a2 + j3'))' - &Ax2(a4 + /I") + . . . 

O2 = 202 + 2(1 - ~ A x ~ O ~ ) ( F ) ~ ,  

(10) 

For the case CI = IS - iy, P = CJ + iy we obtain 

( 1  1 )  

where the overbars have the same interpretation as in (9). We note that (6) = i(2/Ax) sinh (yAx/2). 
Taylor series expansions applied to (1 1) lead to 

w2 = 202 - 2y2 + $At2(a2 - y2)2 -+Ax2(o4  + y4) + A x 2 0 2 y 2  + . . . (12) 

REFLECTION OF PERIODIC WAVES FROM A SINGLE SAW-TOOTH BOUNDARY 

A rigid wall is aligned at 45" to the x- and y-axes with the fluid to the left. The zero flux condition 
at the corresponding saw-tooth boundary reads 

u:+,+ 1/2,s = 0 ,  u:+w 1 / 2  = 0 ,  ( 1  3) 

where x = (q  ++)Ax  is the point of intersection between the boundary and the x-axis. Using 
equation (7) we may rewrite this conditions as 

1 - 1  
A x  +/"+ At q + s , s  1 - v l : + s , s )  = -(- U f f s l - 1 / 2 , s  + of::.+ 1/21. 

For interior points equation (8) is still valid. The substitution of differentiable functions i j ,  u", 
iJ into (14) combined with Taylor series expansions leads to 

- = -(E - i7) + aq 1 
at 

If q, 11 and v" satisfy the continuity equation in (l), the above equation simplifies to 

J2 ,311 u" = - L A X  + 0 ( A x 2 ,  AXAt2), 
4 as 

where u, = J(1/2)(u - u), us = J(1/2)(u + u). In terms of the surface displacement the boundary 
condition reads 

A x  + O(Ax2, AxAt), 
aq J 2 d 2 y  
- 

an 4 as2 

where (a/&) = J( 1/2)(a/dy - d/dx) and (alas) = ,/( 1/2)(a/dy + a/dx); (1  6) and (1 7) demonstrate the 
first-order error of the saw-tooth boundary representation. 
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An incoming plane wave in form of a single harmonic is denoted by 

3 (18) Aei(ksAx + IpA.;-wnAt) (il!,p)incom = 

where k, 1 and w must fit the numerical dispersion relation (9). We assume that the incoming 
wave will give rise only to a single reflected harmonic of the form 

(19) 
The major difference from the analytical case is the presence of the phase shift 6. Substitution 

(20) 

i(lsAx+kpAx-wnAt+J) (il!,p)ref = Be 

into (14) gives 

RA + R*ei’B = 0, 
where 

A real B fitting (20) exists if 

6 = - n + 2arg(R), 

and we obtain A = B, which implies conservation of energy during the reflection. If kAx, lAx and 
o A t  are small, we may expand the right hand side of (22): 

6%- k 2  + l 2  AX + 0(Ax2) .  
k - 1  

This equation clearly illustrates the first-order accuracy of the saw-tooth boundary approxima- 
tion. If k = 1, R becomes real and we obtain 6 = - n. In this case the two harmonics cancel and 
we obtain no non-trivial solution. No harmonic wave may thus propagate parallel to the 
boundary without being influenced by its presence. We will show that the boundary instead 
may act as a waveguide. A wave trapped to the boundary must be of the form 

2 (24) n - Ael(U(J-S<,)AX+U*pAY 101) 
YS,P - 

where a = a - iy (y > 0) and a, y and o must fit the relation (1 1). The quantity corresponding to 
R in (9) has to be zero in this case, which leads to 

1 
A x 2  

0 = W2 + ---(e-YVx cos  AX) - 1). (25) 

We expand (25) in the same manner as (23) and obtain 

7 = $ w 2 A x  + 0 ( A x 2 )  = S O ~ A X  +  AX'). (26) 
For long waves a A x  << 1 and the exponential decay in the normal direction to the boundary is 
slow. From this value of y we obtain an e-folding distance 

where I. is the wavelength. The boundary condition (16) is derived using the continuity equation 
only and will thus also be valid if the Coriolis terms are included in the equation of motion. Since y 
is of order A x  the waveguide action of the boundary must be caused mainly by the discretization 
error of the boundary condition. The artificial trapped modes therefore still exist and may be 
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misinterpreted as Kelvin waves. To decide if a wave is trapped by rotational effects or not we may 
compare the e-folding length E ,  = hE to the Rossby radii R ,  = c*/ f * ,  where the asterisk indicates 
dimensional quantities, h is the depth, c* equals J(gh)  and f ,  is the Coriolis parameter. The 
rotational effects will be dominant if 

R 
I >> --*. 

E* 

PROPAGATION OF WAVES IN CHANNELS WITH SAW-TOOTH 
SHAPED LATERAL BOUNDARIES 

Figure 3 shows the discretized approximation to a channel aligned at 45" to the axes. For waves 
propagating along such a channel, a significant decrease in phase velocity is experienced both 
in numerical tests and applications. This reduction of the wave speed vanishes in the limit of a 
infinitely wide channel. From the discussions of the previous chapter we know that no pure 
harmonic wave may propagate along the channel. There are two possible modifications of the 
wave which may account for the observed delays. First the wave may be criss-crossing along 
the channel in a series of reflections, as described by equations (1 7)-(23). Secondly the components 
of the wave numbers normal to the direction of the channel may be imaginary. This corresponds 
to trapped waves of the form (24). The natural starting point for the analysis of the phenomena 
is the study of the narrowest channel possible, which is depicted to the left in Figure 4. 

Along this channel there is a unique path for wave propagation, which is marked by the 
dotted line. We rename the quantities belonging to the grid points located at this line: 

v ; , s = G s ;  v : + l . s = i l s + l ;  4 + 1 / 2 . s  = P L + 1 / 2 ;  v;,s-1/2 =p;s -1 /2 .  (29) 

Implementation of the boundary conditions and the new notation in equations (7) and (8) leads 
to 

Figure 3. Definition sketch of a channel aligned at 45" to the axes 
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This set of equations is identical to the two-dimensional forms of (7) and (8). The wave speed 
for very long waves (wAt << 1 etc.) will thus equal J(1/2) = 0.707.. . The features of this particular 
case seems to support the ‘criss-cross’ explanation. This explanation is nevertheless wrong. On 
the right of Figure 4 we have drawn an imagined ray of a criss-crossing wave. The difference in 
phase for the right-moving wave between point (I) and point (11) is d1 - 8, = A8 = k,B + iksD 
where k, and k, are the components of the wave number parallel and normal to the channel. 
The phase of the left-moving wave is 0, = 0 ,  + 6 at (11) and 0 ,  = 8, + A0 at point ( I l l ) .  For the 
phase of the right moving wave at (111) we thus have two different expressions. O4 = (I, + 6 = 0 ,  
+ 2A8 + 26 and O4 = k,D + 8,. The equality of these two expressions implies 6 = - k,B < 0. 
Because k is larger than I for the right-moving wave (23) implies that 6 > 0 in the limit kAx, lAx + 0. 
For long waves no criss-crossing is therefore possible and the corresponding explanation of the 
speed reduction must be abandoned. 

Exploiting the symmetry of the channel in Figure 3 we assume the existence of a wave of the form 

q;,p = A e l O ( h  + P)AX cash Y ( S  - p )  

[ e ~ I ~ h A \ + x * p A ~ )  + e i l a* \A\ -+xpA\ )  1, (31) 
A 
2 
- - - 

where CY = (T - iy. From (14) we obtain 

2) 0 = e ( m / 2 ) ~ A x ( ~ 2 ~ X 2  + &a*Ax + , - laax - 

2) + , - ( m / 2 ) y V x ( 6 2 A X 2  + ,-la*Ax + elaAx - 

(W2Ax2 + 2e-YAxcos(oAx) - 2) (32) - - e(m/2)yAx 

+ , -(m/Z)yAx (02Ax2 + 2eyAx cos(oAx) = 2), 

where m is as defined in Figure 3. m + 1 equals the number of q-points at the x-axis. This 
equation, in addition to ( 1  I), gives the dispersion relation for waves propagating along the 
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Figure 4. Left: the narrowest channel possible. Right: the path of a ray for an imagined criss-crossing wave 
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Table 1. Wave speeds 

m c s  Numerical experiments 

1 0.707 1 - 

2 0.8 165 0.8 I7 
3 0.8660 - 

4 0.8944 0.895 
6 0.9258 0.925 
10 0.9535 0.954 
20 0.9760 0.979 

channel. Letting MAX,  wAt -+ 0 keeping m fixed, expansion of (32) and (1 1) gives 

The phase speed c, is given by 
- 112 w w  

k ,  uJ2 2 (34) 

where k ,  = o J2 is the component of the wave number parallel to the channel. There is a short-cut 
leading to equation (34). Because the numerical dispersion relation (9) is of second-order accuracy 
the leading discretization error stems from the modelling of the boundary. We may thus obtain 
(34) by solving the analytical problem defined by the combination of ( 2 )  or (5) and the boundary 
condition (16). Hence (34) is valid for all second-order schemes based on the present grid, having 
a boundary discretization error as given by (16). In Table I we have compared c, from (34) to 
the speed of long single-crested pulses measured in numerical experiments by M$rk.' The 
agreement is convincing and the small discrepancies are probably due to discretization errors 
and inaccuracy in the wave speed measurements in the experiments. 

In the limit ctAx, wAt-0 the velocity components parallel and normal to the channel are 
given by 

where xs and x ,  are parallel and normal co-ordinates to the channel, respectively. In (35) we 
have abandoned the index notation for numerically calculated quantities. (35) illustrates that in 
the inner part of the channel there are no signs of any effect that may be interpreted as a no-slip 
condition, as observed by Weare' for the AD1 scheme. On the contrary: us attains its largest 
values close to boundaries. 

CONCLUDING REMARKS 

The presence of saw-tooth shaped boundaries introduce discretization errors of first order in 
the grid increments. These errors may cause significant distortion and even qualitative changes 
of the reflection properties of the boundary. The reflections of a plane wave from such boundaries 
are accompanied by phase shifts and, contrary to the analytical case, there exist solutions in the 
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form of waves trapped to the boundary. Propagating waves in channels with lateral saw-tooth 
boundaries have to be of this form. Hence the component of the wave number vectors normal 
to the direction of the channel has to be imaginary and the phase speeds are therefore reduced. 
These reductions are severe for narrow channels. Even though the investigations are confined 
to the FB scheme the results will probably be valid for most related schemes. When discretizing 
a geometry, effort should be made to avoid the described effects as far as possible by choosing 
the appropriate orientation of the co-ordinate system. 

In models including rotational effects, the artificial trapped modes described above may be 
confused with Kelvin waves. The influence of the saw-tooth boundary on the trapping of waves 
is negligible if (28) is satisfied. 
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